$G\sb{0}$ of a graded ring

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localization in a Graded Ring

If one wants to investigate the properties and relations of homogeneous ideals in a commutative graded ring, one has as a model on the one hand the well known case of a polynomial ring and on the other hand the general commutative ideal theory. The case of a polynomial ring has been studied for the sake of algebraic geometry, and one of the methods was traditionally the passage to nonhomogeneou...

متن کامل

The Derived Category of a Graded Gorenstein Ring

We give an exposition and generalization of Orlov’s theorem on graded Gorenstein rings. We show the theorem holds for non-negatively graded rings which are Gorenstein in an appropriate sense and whose degree zero component is an arbitrary non-commutative right noetherian ring of finite global dimension. A short treatment of some foundations for local cohomology and Grothendieck duality at this ...

متن کامل

On the graded ring of Siegel modular forms of degree

The aim of this paper is to give the dimension of the space of Siegel modular forms M k (Γ(3)) of degree 2, level 3 and weight k for each k. Our main result is Theorem dim M k (Γ(3)) = 1 2 (6k 3 − 27k 2 + 79k − 78) k ≥ 4. In other words we have the generating function : ∞ k=0 dim M k (Γ(3))t k = 1 + t + t 2 + 6t 3 + 6t 4 + t 5 + t 6 + t 7 (1 − t) 4. About the space of cusp forms, the dimension ...

متن کامل

The canonical module of an associated graded ring

Theorem. Let R be a Cohen-Macaulay ring (locally, always) 1 c R an ideal o f height at least 2, S the Rees ring of R with respect to I, and G = S /S I the associated graded ring. Assume that S and G are Cohen-Macaulay rings, and that S has a canonical module cos. Then G has a canonical module r and: (i) I f co s can be embedded into S such that cos (considered as an ideal now) is not contained ...

متن کامل

Projectivity and flatness over the graded ring of normalizing elements

Let k be a field, H a cocommutative bialgebra, A a commutative left H-module algebra, Hom(H,A) the k-algebra of the k-linear maps from H to A under the convolution product, Z(H,A) the submonoid of Hom(H,A) whose elements satisfy the cocycle condition and G any subgroup of the monoid Z(H,A). We give necessary and sufficient conditions for the projectivity and flatness over the graded ring of nor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1972

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1972-0294326-x